
Spinors, SU(2), the Neutrino Masses, and All That Stuff

I. NOTES FROM ANDRÉ DE GOUVÊA’S LECTURE ON NEUTRINO MASS MODELS (TASI 2020)

(Adrian Thompson)

A. Spinors and Fermion Masses: Majorana or Dirac?

We first introduce Dirac fermions; ψ is a four-component, anti-commuting field whose degrees of freedom are
identified as follows;

Particle - 2 spin components

Anti-particle - 2 spin components

}
4 degrees of freedom (1)

The Dirac spinors are formally representations of a clifford algebra sometimes denoted CL(1, 3), which has generators
γ of the algebra that act on the spinor reps.1

{γµ, γν} = 2ηµν (2)

We have to choose a matrix representation for the γ’s that maintains their Dirac algebra. Here we choose “Weyl”
or “Chiral” representation. In block form,

γ0 =

(
0 I
I 0

)
γi =

(
0 σi

−σi 0

)
(3)

The σi’s are the Pauli matrices, σ1, σ2, σ3. For future reference in the discussion ahead, we state them here.

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(4)

In 4-dimensions, we also define γ5 ≡ iγ0γ1γ2γ3. This matrix has the properties

{γ5, γµ} = 0 (5)

(γ5)2 = I (6)

(7)

and in our Weyl representation, we have

γ5 =

(
−I 0
0 I

)
(8)

The γ5 matrix is interesting in particular, because it’s eigenstates are those that we identify as the L and R chiral
fields inside ψ;

γ5ψL = −ψL (9)

γ5ψR = ψR (10)

where we have ψ =

(
χ
ξ

)
, so we notate ψL =

(
χ
0

)
and ψL =

(
0
ξ

)
where each field χ, ξ are 2-component Weyl

spinors; χ =

(
χ↑
χ↓

)
, ξ =

(
ξ↑
ξ↓

)
. We care about these Weyl spinors because they are the irreducible spin- 1
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1 There should also be a connection here between CL(1, 3) amd SL(2,C), but I need to solidify my understanding of that more - perhaps
that should be saved for another set of notes.
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reps of the Lorentz group2 In most reps, the top 2 components of the 4-component spinor are identified with
particles, and the bottom 2 components with anti-particles. But in our Chiral representation, χ is identified
with left-chiral fermions and ξ with right-chiral fermions.

We can write down the Lorentz scalars that we can build out of ξ and χ in the kinetic and mass terms of our
Lagrangian;

L ⊃ iξ†∂µσµξ + iχ†∂µσ̄
µχ−m(ξ†χ+ χ†ξ) (11)

where we have constructed a 4-vector out of the γ’s;

γµ =

(
0 σµ

σ̄µ 0

)
(12)

for σµ = (I, σi), σ̄µ = (I,−σi). Notice that in Eq. 11, if we go to the massless limit, the left and right components
ξ and χ would decouple and we could not tell any physical difference between these two types of spinors. The mass
term distinguishes them. Also, if we were to introduce a gauge symmetry with new fields for the ξ’s and χ’s to
interact with, the kinetic terms would take ∂µ → Dµ and ξ and χ would still be separate as long as we have the mass
term.

In short, we can recapitulate the statement 14 as

χ =

{
left-helicity particle

right-helicity anti-particle
(13)

ξ ≡

{
right-helicity particle

left-helicity anti-particle
(14)

The SM is made out of chiral fermions; it is a “chiral gauge theory”. Everything in our Lagrangian can be written
in terms of χ and ξ.

Now we can introduce the charge conjugate3 ψc;

ψc ≡ −ηc︸︷︷︸
±1

γ0Cψ∗ (15)

Here the factor ηc is a parity factor, and in our representation, the charge conjugation operator C ≡ iγ2γ0 =(
iσ2 0
0 −iσ2

)
. If we write out what this does to ψ, we get

ψc = −ηc
(
−iσ2ξ

∗

iσ2χ
∗

)
≡
(
χc

ξc

)
(16)

From the result of the transformation above, we have identified χc = ηciσ2ξ
∗. Therefore −iσ2ξ

∗ is the LH component
of the charge-conjugate field; ξ = iσ2(χc)∗. Symbolically,

ξ ⇐⇒ χc (17)

This is why we identify the upper components of ξ and χ with particles, and the lower components with anti-particles;
the action of iσ2 on ξ and χ exchanges the places of the upper and lower components. From Eq. 16 we are allowed
to write everything in terms of one symbol, χ and its charge conjugate χc;

ψ =

(
χ

iσ2(χc)∗

)
(18)

2 Note: see http://www.weylmann.com/weyllorentz.pdf
3 This is a good resource to learn about charge conjugation: https://sites.ualberta.ca/~gingrich/courses/phys512/node64.html

http://www.weylmann.com/weyllorentz.pdf
https://sites.ualberta.ca/~gingrich/courses/phys512/node64.html
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The Lagrangian is reexpressed as

L = iχ†∂µσ̄
µχ+ i(χc)†∂µσ̄

µχc −m[(χc)T (iσ2)χ+ χ†(iσ2)(χc)∗︸ ︷︷ ︸
h.c. of the first term

] (19)

where the combinations

(χc)T (iσ2)χ = χc↑χ↓ − χc↓χ↑ (20)

are spin-0 combinations; these are what the mass terms should look like. The mass terms are the sum of all the
spin-0 combinations.

So, we can make Lorentz scalars out of χ · χc ≡ χc↑χ↓ − χc↓χ↑. But what about terms like χ · χ? This brings us
to the 2 different types of mass terms;

Dirac Mass: mDχ · χc

Majorana Mass: mMχ · χ

Note that χ · χ = χ↑χ↓ − χ↓χ↑ 6= 0 since they anticommute; {χ↑, χ↓} = 0. If we only had χ4, in the Majorana case,
our Lagrangian would become

L = iχ†∂µσ̄
µχ− 1

2
mχ · χ+ h.c. (21)

We will discuss specific instances of Majorana mass models in the next two sections.
As a last aside, it’s good to mention here that we can still make a 4-component object out of χ’s alone; this looks

like

ψ =

(
χ

(iσ2)χ∗

)
(22)

which looks Dirac, but really only has two unique components (χ↑ and χ↓). We could call this a “Majorana Spinor.”

B. Fermion Masses in the SM: Neutrino Mass Models

SU(3)C SU(2)L U(1)Y

Q 3 2

(
u

d

)
+1/6

uc 3̄ 1 −2/3 ×3 generations

dc 3̄ 1 +1/3

L 1 2

(
ν

e

)
−1/2

ec 1 1 +1

TABLE I. SM fermions and their charges

We tabulate the representations and charges of the SM fermions in Table I.

• When the fermions get charged under the gauge symmetries, this takes ∂µ → Dµ.

• The hypercharges are chosen such that the EM charges q are correct after electroweak symmetry breaking
(EWSB) breaks SU(2)L × U(1)Y .

4 In SUSY, the superpotential has to be “holomorphic”. It is easier to demand this when we only work with L or R chiral fields → AT:
I suppose this suggests Majorana fermions are more fitting in SUSY scenarios.
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• There are no bilinears that we can write from this table that are gauge invariant → we need the Higgs field
to do this.

We introduce a higgs field with notation

H =

(
h+

h0

)
H̃ =

(
(h0)∗

−h−

)
(23)

where H gets hypercharge Y = 1/2 and H̃ gets Y = −1/2. The Yukawa couplings for one family take the form

LY uk ⊃ λuQucH + λdQd
cH̃ + λeLe

cH̃ + h.c. (24)

Here we have to explain some notation; when we write the product QH, this is shorthand for uh0 − dh+ since we
are really contracting with iσ2. Writing it out explicitly, we would have

QH ≡ QT (iσ2)H =

(
u

d

)T (
0 1

−1 0

)(
h+

h0

)
(25)

Also, note that Quc is manifestly Lorentz invariant since it involves the combinations χχc as per what we learned in
the last section.

Assigning a VEV to H the following way, we can generate the fermion masses;

〈H〉 =

(
0

v/
√

2

)
〈H̃〉 =

(
v/
√

2

0

)
(26)

However, this predicts massless neutrinos, which we now know is wrong. From oscillation experiments, we know that
at least 2 of the neutrino masses lie in the range [0.01, 0.1] eV, but this is separated from the rest of the fermion
masses by 6 orders of magnitude (the weak scale). Why are they so small? It’s a puzzle;

• We need new degrees of freedom in the SM to answer this

• There are lots of choices

• How do we find the right choice?

The first question is whether the neutrinos have Majorana masses or Dirac masses. In the SM, the neutrinos ν live
in the doublets L which couple to the higgs field, so the way they acquire masses will necessarily involve EWSB.

Let us first consider the case of Dirac masses. We could add a νc to partner up with the ν’s to give us a Dirac
mass, with terms like

L ⊃ λνLνcH (27)

where νc is a (1, 1, 0) representation of SU(3)C × SU(2)L × U(1)Y . This model would be a simple way to give the
neutrinos a mass - why don’t we use it? Because the combination νcνc is also Lorentz and Gauge invariant, so
nothing would prevent having terms like

L ⊃ m

2
νcνc (28)

which is not a Dirac mass term → these can’t really be Dirac fermions! We need to have a consistent theory.
The answer must then come from demanding a symmetry structure that gives us a consistent picture of the

neutrino sector and its masses. The recipe for how to do this in the SM is pictured below:
After constructing the Lagrangian in the SM, there are 2 anomalous global symmetries:

U(1)B

U(1)L

}
U(1)B−L (29)

We get U(1)B−L for free. If we write down a generic BSM, we can break B − L. We have good reason to do this,
namely that there is a result from quantum gravity that does not “allow” global symmetries.5 One way of breaking
B − L, for example, is with the interaction we wrote previously;

− L ⊃ λνLνcH +
m

2
νcνc + h.c. (30)

5 It would be good to add a reference here for this - weak gravity conjecture.
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Demand the Gauge Symmetries

Add the fields Q, uc, dc, L, ec

Write down a renormalizeable L

FIG. 1. The SM recipe

C. The Weinberg Operator: UV completions

The generic BSM effective operator that parameterizes the generation of the neutrino masses is the dim-5 Wein-
berg operator. Symbolically, contracting over the appropriate indices, it is

1

2Λ
(LH)(LH) (31)

We can learn about the Majorana or Dirac nature of the neutrinos from this operator, but not much more. For that,
we would need to know the UV structure that gives rise to this higher dimension operator. By analogy, this is like
how we studied the weak interactions through the Fermi theory of effective lepton interactions, like

LFermi ⊃ GF µ̄γανµ,Lν̄eγαeL , (32)

for which we needed “new physics” to support, i.e. the W boson. But the Fermi operator by itself didn’t tell us how
big MW was by itself. That is where we had to test the UV completion of the Fermi model (electroweak theory) at
the LHC and in muon decays etc.

We now turn to a few examples of UV completions of the Weinberg operator; Type-II and Type-I seesaw models.

1. Type II Seesaw

In the type-II seesaw model, we arrange the leptons into a triplet with hypercharge −1:

LL→

 νν

(νe+ eν)/
√

2

ee

 (33)

and we add a scalar triplet higgs field T with hypercharge +1:

T =

t++

t+

t0

 . (34)

Then we could suppose interactions of the form L ⊃ λTLLT . From this setup, we can speculate that if T takes on
a VEV in the lowest component;

〈T 〉 =

 0

0

vT

 , (35)

then the VEV of T will contribute to the generation of the lepton masses.
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AT: I’m not totally sure how LLT is contracted in de Gouvêa’s notation above. But if we represent T as
a 2x2 matrix instead of a column vector,

T =

(
t+ t++

t0 −t+

)
,

and L in its usual doublet form, then the contraction LT (iσ2)TL seems to work.

With this construction, after EWSB 〈T 〉 would give rise to the mass term vT νν. This also spontaneously breaks
B − L, which would give rise to a Goldstone boson - a massless scalar or pseudoscalar. This is bad, in a sense,
because this Goldstone, ϕ let’s say, would contribute to pion decay π0 → µ+ν̄ϕ which we can rule out.

Then, instead of the λTLLT interaction, our solution will have to be a potential term like

V ⊃ k(H̃T H̃)→ explicit /L with no Goldstone (36)

Now v and vT are the VEVs which contribute to the W,Z masses, and we would take vT << v. This will allow a
small neutrino mass; from the triplet model, we get mass terms from the yukawa matrices

λijT LiLjT → mij
ν = λijT vT (37)

In diagramatic form, our Weinberg operator is shown in Fig. 2 which gets integrated out to give us

H H

LL

T

FIG. 2. Type II Seesaw

∼ (LH)(LH)

Λ
(38)

We call this a “seesaw” model because when you integrate out the diagram to get the operator above, it turns out
that

1

Λ
∝ 1

m2
T

.

2. Type I Seesaw

In type-II seesaw models, we would add νc back into the story - we might identify them with the notion of “sterile”
neutrinos.

− L = λνLν
cH +

M

2
νcνc (39)

What is the effect of the mass M? In this scenario,

• M adds quantum corrections
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H

L

H

L

FIG. 3. Type I Seesaw

• M breaks lepton number symmetry

• but it has nothing to do with the weak scale or the higgs VEV

So what if M is much bigger than the weak scale? We can integrate out the weak scale and generate our Weinberg
operator via the diagram in Fig. 3.

After EWSB, our Lagrangian will look like

L ⊃ mDνν
c +

M

2
νcνc (40)

where mD is the Dirac mass. This could be expressed in terms of a mass matrix

L ⊃

(
ν

νc

)T (
0 mD

mD M

)(
ν

νc

)
. (41)

Diagonalizing this mass matrix to see the neutrino mass eigenstates generates a heavy neutrino with mass mheavy
ν ∼M

while mlight
ν ∼ m2

D/M . Since M is more or less unconstrained, this gives us the freedom to take heavy M >> mD

to generate very light neutrino masses but with heavy sterile masses.
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II. SU(2): CHANGE OF BASES FROM TRIPLET TO DOUBLET REPRESENTATION

If we have a triplet field Φ under SU(2), we can expand Φ in the basis of Pauli matrices;

Φ→ x1σ1 + x2σ2 + x3σ3 (42)

for field degrees of freedom x1, x2, x3. Writing it out in matrix form, we have

Φ =

(
x3 x1 − ix2

x1 + ix2 −x3

)
(43)

We act with the analog of the charge operator in this new basis;

∆ ≡ [Φ, τ3] +
Y

2
Φ (44)

where τ3 = σ3/2. Expanding out the new field ∆ in matrix form we see that

∆ =

(
x3Y/2 x1 − ix2 + (x1 − ix2)Y/2

−x1 − ix2 + (x1 + ix2)Y/2 −x3Y/2

)
(45)

If Φ has a hypercharge of Y = 2, then we have

∆ =

(
x3 2(x1 − ix2)

0 −x3

)
(46)

This motivates the definitions

Φ ≡

(
δ+ δ++

δ0 −δ+

)
, Φc ≡

(
δ− δ−−

δ0 −δ−

)
(47)

which allows us to find Lorentz-invariant combinations of the field Φ with other fields that respect SU(2) gauge
invariance, i.e. combinations that when expanded only leave charge-neutral terms. For instance, if we have a doublet

H ≡

(
h+

h0

)
, Hc ≡

(
h−

h0

)
(48)

then taking the product

(Hc)T (Φc)TΦH = δ−δ+(h0)2 + δ−−δ++(h0)2 − δ0δ+h0h− + δ−δ++h0h− (49)

− δ0δ−h0h+ + δ−−δ+h0h+ + (δ0)2h−h+ + δ−δ+h−h+

we can see easily that each term in the expansion is charge neutral simply by virtue of the +,− notation indicating
the eigenvalues of the charge operator.

Now the challenge is to ask “what are all the Lorentz scalars we can make out of Φ and other fields that are not
only charge neutral, but also SU(2)L × U(1)Y singlets?”

To construct a U(1)Y singlet, We can combine the triplet field with two Y = 1 doublets. One of the possible
Y = −1 doublet is the Lepton doublet L. L̄ on the other hand is a Y = 1 doublet because of the complex
conjugation. However, L̄c involves a double conjugation of the lepton doublet field. Therefore, it is a Y = −1
doublet. Therefore the mass terms of this type is:

LM ∼ L̄cΦL (50)

Now the question arises as to whether it is SU(2)L invariant.
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III. MAJORANA REPRESENTATION AND MAJORANA FERMIONS

(Aparajitha Karthikeyan)

The spinor fermion fields are goverened by the Dirac equation:

(iγµ∂µ −m)Ψ = 0 (51)

γµ are 4x4 matrices that must satisfy the Clifford Algebra (2) and

γ0γµγ0 = γ†µ (52)

We came across Dirac or Weyl representations for the Gamma mateices. One another possible representation is the
Majorana representation where all the Gamma matrices are purely imaginary.

γ̃0 =

(
0 σ2

σ2 0

)
γ̃1 =

(
iσ1 0

0 iσ1

)
γ̃2 =

(
0 σ2

−σ2 0

)
γ̃3 =

(
iσ3 0

0 iσ3

)
(53)

One noticeable feature of this representation is that the operator acting on the fermion field in the Dirac equation
(51) is Real, or hermitian. Therefore it is possible to obtain a real solution for Ψ of the Dirac equation. Let us denote

these real solutions with a tilde, ψ̃ such that

ψ̃∗ = ψ̃ (54)

Such a solution to the Dirac equation is called a Majorana fermion. Note: It is not always possible to obtain a real
solution for the Dirac equation. Since there are infinite number of choices for the Dirac matrices, all satisfying (2)
and (52), there always exists a unitary transformation between two representations of Gamma matrices. in other
words, if γµ (without the tilde) are the matrices in any random representation, they can be related to γ̃µ by

γµ = Uγ̃µU† (55)

Accordingly, the solution of the Dirac equation in this general representation would be

Ψ = UΨ̃ (56)

The reality condition (54) expressed in the new representation would be

U†Ψ = (U†Ψ)∗ = UTΨ∗ (57)

Ψ = UUTΨ∗ (58)

To put it formally, let us define the Charge conjugation operator here as

γ0C = UUT (59)

And a charge conjugate state as

Ψc = ηcγ0CΨ∗ (60)

Then if it is a Majorana fermion, the reality condition (54) in our chosen representation is

Ψc = Ψ (61)

At this point in time, we are bound to have the following two questions. 1. For any fermion, we can find a real
solution in the Majorana representation. So why can’t all fermions be Majorana fermions? 2. Why is γ0C specifically
called the charge conjugation operator? To answer the first question, we need to note that real solutions are possible
only for chargeless fermions. For a charged fermion, the normal derivative becomes a Covariant derivative. Then the
Dirac equation becomes

(iγ̃µDµ −m)Ψ = (iγ̃µ∂µ + qγ̃µAµ −m)Ψ = 0 (62)
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In other words, for a charged field, the coupling of Ψ and Aµ contributes to the Dirac equation. Even if we get into
the purely imaginary Majorana representation of the Gamma matrices, this term is purely imaginary. Therefore the
Dirac equation is not real anymore and it becomes impossible to obtain real solutions for a charged fermion field Ψ.

Coming to the second question, the complex conjugate of (62) looks like

(iγ̃µ∂µ − qγ̃µAµ −m)Ψ∗ = 0 (63)

This shows that Ψ∗ is a fermion field with charge −q. In other words, the charge conjugation operation in the
Majorana representation is complex conjugation

Ψ̃c = Ψ̃∗ (64)

When we go into any other representation, γ0C along with the complex conjugation essentially performes the same
operation that the complex conjugation performed in the Majorana representation. Therefore, γ0C is the charge
conjugation operator and Ψc is the charge conjugate field.

One can verify that the Unitary matrix that can take us from the Majorana representation to the Weyl represen-
tation is

U =
1

2

(
1 + σ2 −i(1− σ2)

i(1− σ2) 1 + σ2

)
(65)

Therefore,

γ0C = UUT =

(
0 iσ2

−iσ2 0

)
(66)

Or,

γ0C = UUT =

(
0 iσ2

−iσ2 0

)
= iγ2 (67)
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